If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-30x-11=0
a = 1; b = -30; c = -11;
Δ = b2-4ac
Δ = -302-4·1·(-11)
Δ = 944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{944}=\sqrt{16*59}=\sqrt{16}*\sqrt{59}=4\sqrt{59}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-4\sqrt{59}}{2*1}=\frac{30-4\sqrt{59}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+4\sqrt{59}}{2*1}=\frac{30+4\sqrt{59}}{2} $
| 6a+5+6a–53=180 | | 12^x=8(6^x) | | 5(7r+7)=-210 | | Y=4x+3=87 | | 3x-57=4x-90 | | x/3-3=5-7x/3 | | 150-7.5x=112.50 | | 7y+7=y+31 | | x/2+8=5x/2+2 | | 7u-13=u+11 | | 57+x+x+87+50=180 | | 7y+148=180 | | .5(x=4)=12 | | 3y+90+4y+58=180 | | 10m-21=3(9+6m | | 3x/12=30 | | 3^x+1-3^x=1458 | | 3s+51=9s+33 | | .8x-1.6=20 | | y-30=2y-63 | | 5c-79=4c-54 | | 7×+7(6x-5)=112 | | 7(w-1)=9w-19 | | 3x+20=12+6x | | 2240=t+5280 | | -3u+33=-6(u-3) | | 2(2/3)+y=4(1/4) | | 3x+10+5x+16=90 | | 9(w-3)=-2w-38 | | 5x-7=2x+ | | 800+2x=6500 | | -2y-41=-9(y+3) |